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Abstract—We study channel-aware binary decision fusion over
a Rayleigh flat fading shared channel with multiple antennas
at the Decision Fusion Center (DFC). We derive the optimum
and three sub-optimal fusion rules, namely the Max-Log, the
Chair-Varshney - Maximum Likelihood and the Maximum Ratio
Combining rules. Simulation results for the performance are
presented in terms of Probability of Detection (under a fixed
false alarm rate) vs SNR and number of antennas. The effect of
multiple antennas at the DFC for the presented rules is analyzed,
showing benefits and limitations of the choice.

I. INTRODUCTION

In a wireless sensor network (WSN), Decision Fusion (DF)
consists in transmitting local decisions about an observed
phenomenon from individual sensors to a DF Center (DFC) for
a final decision. The typical communication protocol between
sensors and DFC is a parallel access channel (PAC), imple-
mented through time, code or frequency division schemes.
However the broadcast nature of the wireless medium can be
exploited for DF as in [1].

Multiple antennas are employed at the fusion center in
order to combat deep fading effects in [2], [3]. The result
is a communication over a “virtual” Multiple-Input Multiple-
Output (MIMO) channel between the sensors and the fusion
center (see Fig. 1). The stringent assumption is the instan-
taneous channel state information (CSI) at the fusion center,
which provides high performances via design of channel-aware
fusion rules [4], [5], [6]. For this reason channel-aware fusion
rules for coherent, non-coherent, and differential modulation
were already proposed for PAC in [4], [5], [6], [7].

Unfortunately, the optimal DF rule over MIMO channels
with instantaneous CSI presents several difficulties in the
implementation: (i) complete knowledge of the channel param-
eters and sensors local performances; (ii) numerical instability
of the formula, due to the presence of exponential functions
with large dynamics; (iii) exponential growth of complexity
with the number of sensors. This motivates the investigation
of sub-optimal DF rules with simpler implementation and
reduced system knowledge.

Sub-optimal rules for PAC scenario, presenting only the
issues (i) and (ii), were designed in [4], [5], [6], [8]. More
specifically optimal rule was compared to Maximum Ratio
Combining (MRC), Chair-Varshney - Maximum Likelihood
(CV-ML), Equal Gain Combining (EGC) and Max-Log. MRC
and CV-ML fusion rules approach optimum performance at
very low and very high channel SNRs, respectively and they
both suffer from a significant performance loss at medium

Figure 1. The Decision Fusion model in presence of a MIMO channel.

channel SNR [4]. EGC was shown to have robust performance
for most SNR range [8]. Max-Log rule has been shown to
outperform all the mentioned rules for all the SNR range
[6]. The rules considered in [6] have also been derived and
compared in the context of sensors differential encoding [5].

Zhang et al. [3] were the first to propose DF over MIMO
channels, focusing on J-Divergence-optimal power allocation
under non-identical local performances, which requires instan-
taneous CSI. DF rules over a matrix channel model, with only
channel statistics knowledge and non-coherent modulation
were studied in [1]. Distributed detection over MIMO with
instantaneous CSI at the fusion center is tackled with the use of
amplify-and-forward sensors in [2]; the optimum (data) fusion
rule is derived and performance improvement is demonstrated
when using multiple antennas at the fusion center.

In this paper we study channel-aware DF rules over MIMO
channels, to best of our knowledge, for the first time. More
specifically, we derive CV-ML, Max-Log and MRC fusion
rules in this scenario (and suggest corresponding efficient
implementations for the first two, through Sphere Decoder
Algorithm), as appealing alternatives to the optimum in terms
of performance-complexity tradeoff. We show that even the
use of two antennas gives significative improvement to all the
presented rules, letting them achieve the same performances
as the single antenna case, but with a dramatic reduction
of WSN energy consumption. Finally we illustrate that only
a few antennas at the DFC are substantially beneficial as
performance saturates with the number of antennas.

The paper is organized as follows: Sec. 2 introduces the
system model; in Sec. 3 sub-optimal rules are derived in
this scenario and implementation aspects are discussed; Sec.
4 shows performances via computer simulations in terms of
system probability of detection (under a fixed false alarm rate)
vs number of antennas and SNR; some concluding remarks
are given in Sec. 5. Notation: Lower-case (resp. Upper-case)
bold letters denote vectors (resp. matrices), with an (resp.
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an,m) denoting the nth (resp. the (n,m)th) element of the
vector a (resp. matrix A); upper-case calligraphic letters
denote discrete and finite sets, with AK denoting the k-ary
cartesian power of the set A; IN denotes the N ×N identity
matrix; 0N (resp. 1N ) denotes the null (resp. ones) vector
of length N ; E{·}, (·)†, < (·), and ‖·‖ denote expectation,
hermitian, real part, and Frobenius norm operators; P (·) and
p(·) denote probabilities and probability density functions
(pdf), with P (A|B) and p(a|b) their respective conditional
counterparts; NC(µ,Σ) denotes a circular symmetric complex
normal distribution with mean vector µ and covariance matrix
Σ; finally the symbols ∼, → and ∝ mean “distributed as”,
“maps to” and “proportional to” respectively.

II. SYSTEM MODEL

We consider a distributed binary hypothesis testing task,
where K sensors are used to discriminate between the hy-
potheses of the set H = {H0, H1}, representing, e.g. (but not
necessarily) the absence (H0) or the presence (H1) of a spe-
cific target of interest. The kth sensor, k ∈ K , {1, 2, . . . ,K},
takes a local binary decision dk ∈ H about the observed phe-
nomenon on the basis of its own measurements. The decision
dk is assumed independent on other decisions d`, ` ∈ K, ` 6= k,
conditioned on Hi ∈ H. Each dk is mapped to a symbol
xk ∈ X = {−1,+1} of a BPSK modulation1; w.l.o.g. we
assume that dk = H0 → xk = −1 and dk = H1 → xk = +1.
The quality of the kth sensor decisions is characterized by
the conditional probabilities P (xk|Hi). More specifically, we
denote PD,k , P (xk = 1|H1) and PF,k , P (xk = 1|H0),
respectively the probability of detection and false alarm of
the kth sensor. The sensors communicate with the DFC
over a wireless flat-fading MAC, with i.i.d. Rayleigh fading
coefficients of unitary mean power. The DFC is equipped
with N receive antennas in order to exploit diversity and
combat signal attenuation due to the wireless medium; this
configuration determines basically a distributed (or “virtual”
[3]) MIMO channel, as shown in Fig. 1. Also, instantaneous
CSI and perfect synchronization are assumed at the DFC as in
[3]; note that multiple antennas at the DFC do not make these
assumptions harder to verify w.r.t. (single antenna) MAC. We
denote: yn the received discrete signal at the nth antenna of
the DFC; hn,k ∼ NC (0, 1) the fading coefficient between the
kth sensor and the nth antenna of the DFC; wn the additive
white Gaussian noise at the nth antenna of the DFC. The
vector model at the DFC is the following:

y = Hx+w (1)

where y ∈ CN , H ∈ CN×K , x ∈ XK , w ∼ NC(0N , σ
2
wIN )

are the received signal vector, the channel matrix, the transmit-
ted signal vector and the noise vector, respectively. Remarks:
The vector model in Eq. (1) can be underloaded (K < N ),
fully-loaded (K = N ) or overloaded (K > N ). Whether in

1Note that in an absence/presence task, where H0 is less probable, On-
Off Keying (OOK) can be employed for energy efficiency purpose. In the
following we refer only to BPSK, however the results presented in this paper
apply straightforward to OOK.

MIMO communication systems all the three scenarios are of
interest, in the specific case of WSN only the overloaded case
is reasonable, as typically the number of sensors is larger than
the number of antennas that could be employed at the DFC
(i.e. K > N ). Throughout this paper we will refer to the
channel SNR as the ratio between the average total received
energy from the WSN Es = E{‖Hx‖2} and the one-sided
power spectral density of the continuous process noise σ2

w,
i.e. SNR , Es/σ2

w = KN/σ2
w. Note that the corresponding

channel SNR for the kth sensor is SNRk = N/σ2
w.

III. FUSION RULES

Optimum Decision: The optimal test in Neyman-Pearson
sense [9] for the considered problem can be formulated as

Λopt , ln

[
p(y|H1)

p(y|H0)

] Ĥ=H1

≷
Ĥ=H0

γ (2)

where Ĥ , Λopt and γ denote the estimated hypothesis, the Log-
Likelihood Ratio (LLR, i.e. the optimal fusion rule, referred
also as the “optimum” in the following) and the threshold
chosen to assure a fixed system false-alarm rate, respectively.
An explicit expression of the LLR from (2) is given by

Λopt = ln

[∑
x∈XK p(y|x)

∏K
k=1 P (xk|H1)∑

x∈XK p(y|x)
∏K
k=1 P (xk|H0)

]
(3)

= ln

∑x∈XK exp
(
−‖y−Hx‖2

σ2
w

)∏K
k=1 P (xk|H1)∑

x∈XK exp
(
−‖y−Hx‖2

σ2
w

)∏K
k=1 P (xk|H0)


where we have exploited the conditional independence among
xk (given Hi), and of y from Hi (given x).

CV-ML Rule: In this case firstly an estimate of x, denoted
x̂ in the following, is computed with Maximum-Likelihood
detector [10] from y. Then the global decision Ĥ is taken on
the basis of x̂ using the Chair-Varshney (CV) rule [11], i.e.
the optimal fusion rule for noiseless channels. The expression
of this two-stage fusion rule is given by

x̂ = arg min
x∈XK

‖y −Hx‖2 (4)

ΛCV−ML =

K∑
k=1

ûk ln
(
PD,k
PF,k

)
+ (1− ûk) ln

(
1−PD,k
1−PF,k

)
(5)

where we denoted ûk , x̂k+1
2 , k ∈ K. As in the PAC case [4]

the CV-ML is the high-SNR approximation of the optimum
of Eq. (3); the proof is reported in Appendix.

Max-Log Rule: Let us first recall the Max-Log approxi-
mation known from turbo-codes literature [12], and given by
ln
(∑L

`=1B`e
A`
)
≈ max`∈{1,2,...,L}{A` + ln(B`)}, where

Ai ∈ R, Bi ∈ R+. This approximation is accurate when
one of the terms in the sum

∑L
`=1B`e

A` dominates over the
remaining terms. The expression of LLR from Eq. (3) has the
same form and thus by using this approximation we obtain the
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Table I
IMPLEMENTATION COMPARISON OF THE FUSION RULES.

Fusion Rule required param. complexity w.r.t. K - stability

Optimum (PD,k, PF,k), H , σ2
w O(2K) - unstable

CV-ML (PD,k, PF,k), H O(2K−n1 ),n1 > 0 - stable

Max-Log (PD,k, PF,k), H , σ2
w O(2K−n2 ),n2 > 0 - stable

MRC H1K O(1) - stable

following sub-optimal fusion rule:

ΛMax−Log = min
x∈XK

[
‖y−Hx‖2

σ2
w

−
K∑
k=1

lnP (xk|H0)

]

− min
x∈XK

[
‖y−Hx‖2

σ2
w

−
K∑
k=1

lnP (xk|H1)

]
(6)

which can be interpreted as the difference between hypothesis
prior-weighted minimum distance searches.

MRC Rule: The LLR of Eq. (3) can be simplified under
the assumption of perfect sensors [6], [13], i.e. (PD,k, PF,k) =
(1, 0), k ∈ K. In this case the transmitted vector x ∈
{1K ,−1K} and Eq. (3) reduces to:

ΛMRC = ln

exp
(
−‖y−H1K‖2

σ2
w

)
exp

(
−‖y+H1K‖2

σ2
w

)
 ∝ <(y†H1K) (7)

where in the r.h.s. we have neglected the terms that can be
incorporated in γ through the (2). As in the PAC case [4] the
MRC is also the low-SNR approximation of the optimum of
Eq. (3) when local performances of sensors are identical (i.e.
(PD,k, PF,k) = (PD, PF ), k ∈ K); again the proof is reported
in Appendix.

Discussion on implementation: In the practice the LLR
of Eq. (3) is difficult to compute as it contains exponential
functions that have a large dynamic range especially for
moderate-high channel SNRs KN/σ2

w � 1; this becomes a
quite severe requirement for fixed point implementations [5],
[6], [13]. All the proposed sub-optimal rules instead present
numerical stability, however they require a different degree
of system knowledge and they also differ in computational
complexity. In Tab. I we report a complete comparison of the
aspects mentioned (note that CV-ML requires (PD,k, PF,k)
only if sensors differ in local performances, cfr. Eq. (5)).
Terms nj , j ∈ {1, 2}, are inserted to underline that the Exp-
complexity of CV-ML and Max-Log can be mitigated by
implementing them through the Generalized Sphere Decoder
(GSD) presented in [14]. In fact for CV-ML the equivalent
problem x̂ = arg minx∈XK ‖D(ρ −Hx)‖2 in place of Eq.
(4) can be efficiently solved, with D denoting the upper-
triangular matrix deriving from the Cholesky Factorization of
G , H†H + IN (that is G = D†D) and ρ , G−1Hy.
Instead the GSD implementation of Max-Log rule requires
slight modifications to the steps followed in [14]. The steps,

not reported here for sake of brevity, lead to

ΛMax−Log = min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑
k=1

lnP (xk|H0)

]

− min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑
k=1

lnP (xk|H1)

]
(8)

The computation of Eq. (8) can be easily performed through
a double search with GSD (one for each hypothesis) or with
a more efficient single search, following the same approach
in [15]. In both cases the complexity of Max-Log is always
higher than CV-ML, that is n1 > n2. Detailed results on the
complexity reduction deriving from the GSD implementations
of minimum distance searches can be found in [14].

IV. SIMULATION RESULTS

We compare the performances of the presented fusion
rules in a WSN of K = 8 sensors with identical local
performances (PD,k, PF,k) = (PD, PF ) , (0.5, 0.05), k ∈ K,
as adopted in [4], [6], [8] for rules comparison in PAC.
The global performances are analyzed in terms of the system
probabilities of false alarm and detection, defined respectively
as PF0

, Pr{Λ > γ|H0} and PD0
, Pr{Λ > γ|H1}, with Λ

representing the decision statistics of a generic fusion rule.
PD0

vs (SNR)dB: In Fig. 2 we show the PD0
as a

function of the channel (SNR)dB (corresp. (SNRk)dB ≈
(SNR)dB − 9 ), under PF0 ≤ 0.01; we plot the cases
N ∈ {1, 2} to investigate the effect on performances when
two antennas are employed at the DFC. In the same fig-
ure we also report the (upper) “observation bound” [1], i.e.
the optimum performances over noiseless channel, given by
P obsD0

=
∑K
i=Kγ

(
K
i

)
(PD)i(1 − PD)K−i, where Kγ is a

discrete threshold. Firstly, numerical results confirm analytical
derivations, i.e. CV-ML and MRC approach the optimum
at high and low channel SNR, respectively, also in MIMO
scenario (the “jumpy” behaviour of the CV-ML, given by the
finite values assumed by Eq. (5), was already explained in [8]
for the PAC case). Max-Log strictly approaches the same per-
formances as the optimum over all the SNR range considered
(i.e. [0, 30]dB), but it requires complete system knowledge (cfr.
Tab. I). All the rules significantly benefit from the presence
of two antennas at DFC (cf. solid with dashed lines in Fig.
2). The Max-Log (as the optimum) has the best improvement
in the range [5, 20]dB and reaches the observation bound at
(SNR)dB ≈ 20, instead of (SNR)dB ≈ 30 when N = 1
at the DFC. CV-ML rule needs higher SNR to get acceptable
performances, but the case N = 2 still needs less energy to
reach the observation bound (in fact if N = 1 the bound
is reached at (SNR)dB > 30, not visible in Fig. 2). Finally
multiple antennas not only increase MRC performances at low-
medium SNR, but also give better limiting performances.
PD0

vs N : In Fig. 3, we show the PD0
as a function of the

number of antennas N , under PF0
≤ 0.01; we plot the cases

(SNR)dB ∈ {5, 15} to investigate the performances when N
increases under realistic channel SNR values. It is apparent
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Figure 2. PD0 vs channel (SNR)dB ; PF0 ≤ 0.01. WSN with K = 8
sensors, (PD,k, PF,k) = (0.5, 0.05), k ∈ K. N ∈ {1, 2}.
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Figure 3. PD0
vs N ; PF0

≤ 0.01. WSN with K = 8 sensors,
(PD,k, PF,k) = (0.5, 0.05), k ∈ K. (SNR)dB ∈ {5,15}.

that adding more antennas at the DFC is beneficial for all the
rules presented, however a saturation effect is present. The
saturation depends on the SNR and the fusion rule chosen;
in particular specific configurations achieve the observation
bound, e.g. Max-Log with N = 4 at (SNR)dB = 15.

V. CONCLUSIONS

In this paper we addressed the design of sub-optimal fusion
rules, more suitable for practical implementation than the
optimum one, in a DF task over a virtual MIMO channel.
The study was motivated by the need of multiple antennas
at the DFC to obtain a dramatic increase of the performances
with a reduced WSN energy budget. The proposed alternatives,
Max-Log, CV-ML and MRC, solve the issues about fixed
point implementations and present reduced requirements on
complexity and partly on system knowledge. Furthermore they
still greatly benefit from multiple antennas at the DFC.

APPENDIX

CV-ML: For small values of σ2
w, if we denote the true

transmitted vector as xT , the corresponding value in Eq. (3)
will be a dominating term, thus the LLR is well approximated
by Eq. (6). Also the following approximation holds:

x̂i , arg min
x∈XK

[
‖y−Hx‖2

σ2
w

−
K∑
k=1

lnP (xk|Hi)

]
≈ x̂ (9)

where x̂ is given by Eq. (4), i.e. the second term becomes
irrelevant. Thus, substituting Eq. (9) in Eq. (6), the LLR
reduces to Λopt ≈ ln

∏K
k=1 P (x̂k|H1) − ln

∏K
k=1 P (x̂k|H0),

which can be rearranged easily to obtain Eq. (5).
MRC: Starting from Eq. (3) and observing

that for high values of σ2
w, exp

(
−‖y−Hx‖2

σ2
w

)
≈

exp
(
−‖y‖

2

σ2
w

)(
1− ‖Hx‖2−2<{y†Hx}

σ2
w

)
, we get

Λopt ≈ ln

∑x∈XK

(
1− ‖Hx‖2−2<{y†Hx}

σ2
w

)∏K
k=1 P (xk|H1)∑

x∈XK

(
1− ‖Hx‖2−2<{y†Hx}

σ2
w

)∏K
k=1 P (xk|H0)


(10)

Exploiting the property
∑

x∈XK P (x|Hi) = 1, and using the
approximation ln(1 + x) ≈ x, when x� 1, we obtain:

Λopt ≈
2<{y†H (E{x|H1} − E{x|H0})}

σ2
w

+ α (11)

where α is a term not depending on y. When local per-
formances are identical, E{x|H1} = 1K(2PD − 1) and
E{x|H0} = 1K(2PF − 1), which gives Eq. (7), except for
α (irrelevant in Eq. (2)).
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